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We study the anisotropic Heisenberg spin-glass model on a three-dimensional hierarchical latticesdesigned
to approximate the cubic latticed, within a real-space renormalization-group approach. Two different initial
probability distributions for the exchange interactionsJij d, Gaussian and uniform, are used, with zero mean and

width J̄. The skT/ J̄d3D0 phase diagram is obtained, whereT is the temperature,D0 is the first moment of the
probability distribution for the uniaxial anisotropy, andk is the Boltzmann constant. For the Ising model

sD0=1d, there is a spin-glass phase at low temperaturesshigh J̄d and a paramagnetic phase at high temperatures

slow J̄d. For the isotropic Heisenberg modelsD0=0d, our results indicate no spin-glass phase at finite tempera-
tures. The transition temperature between the spin-glass and paramagnetic phase decreases withD0, as ex-
pected, but goes to zero at a finite value of the anisotropy parameter, namelyD0=Dc,0.59. Our results
indicate that the whole transition line, between the paramagnetic and the spin-glass phases, forDc,D0,1,
belongs to the same universality class as the transition for the Ising spin glass.
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I. INTRODUCTION

Considerable attention during the past decade has been
devoted to the investigation of systems displaying spin-glass
sSGd order. Numerical studiesf1g have revealed that the SG
phase transition occurs in the three-dimensional Ising model
sstrongly anisotropic systemd, indicating that the lower criti-
cal dimension for the Ising SG would bedl =2. On the other
hand, many real materials that show SG order are
Heisenberg-like rather than Ising-like, in the sense that the
magnetic anisotropy is considerably weaker than the isotro-
pic exchange interaction. Some Monte Carlo simulations
f2,3g have indicated that the isotropic three-dimensional clas-
sical Heisenberg SG with finite-range interaction does not
exhibit the conventional SG order at finite temperatures in
zero field, while Lee and Youngf4g found such an ordered
phase at finite temperatures for this model.

Experiments clearly demonstrate the existence of order at
finite temperatures in Heisenberg-like SG systemsf5g, where
the chirality-driven mechanism proposed by Kawamuraf3,6g
can be interpreted consistently to explain some of the puzzles
concerning the experimentally observed SG transition in zero
field f5g. Note that the numerical observation of a finite-
temperature chiral-glasssCGd transition sTCG.0d in the
three-dimensional classical Heisenberg SG is not inconsis-
tent with the earlier observation of the absence of the con-
ventional SG order at finite temperaturessTc=0d. In Refs.
f3,6g it is suggested that the SG-paramagnetic critical tem-
perature obeysTc,TCG, and quite possiblyTc=0 in three
dimensions. In the presence of a small random magnetic an-
isotropy, which always exists in real experimental situations,

an SG phase is expected to emerge as a result of the fact that
the anisotropy mixes the two degrees of freedom, spin and
chirality. Therefore, in the chirality-driven mechanism the
SG phase transition experimentally observed in a class of
compounds such as CuMn is essentially governed by the CG
fixed point.

Note, however, that some numerical results support that
the SG transition temperature might coincide with the CG
transition temperature, i.e.,Tc=TCG.0 f4,7g, in contrast
with the results of Refs.f3,6g swhich show that in three di-
mensions the spin and the chirality are decoupled on suffi-
ciently long length scales, withTc,TCGd. Therefore, the
presence of SG order in the three-dimensional short-range
Heisenberg SG is still an open question. In four or more
dimensions, there is numerical evidence of a phase transition
f8g, and so the lower critical dimensiondl for the short-range
Heisenberg spin glass should satisfy 3ødl ,4.

On the other hand, various types of anisotropies have a
profound influence on the SG phase such as Dzyaloshinski-
Moriya sDMd, dipolar coupling, and uniaxial. A weak aniso-
tropy is crucially important in realizing a finite-temperature
SG transition, which causes a crossover from the isotropic
Heisenberg behavior to the anisotropic Ising behavior. The
expected Heisenberg-to-Ising crossover, however, has not
been observed experimentally, and this puzzle has remained
unexplained. Using a hybrid Monte Carlo method in the
short-range ±J Heisenberg spin glass with random aniso-
tropy of a DM typesDd on a simple cubic latticef9g, it has
been shown that for small values ofD, the transition tem-
perature vanishes asTc/J.0.53sD /Jd1/4. This result is con-
sistent with those found by Morriset al. f10g based on a
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scaling argument. When the spin interactions are of long-
range Ruderman-Kittel-Kasuya-YoshidasRKKY d type, the
critical temperature has a much weaker dependence on the
anisotropy, namelyTc/J.flnsJ/Ddg−1/2 sD! ,Jd f11g.
These two studies indicate that in the isotropic limitsD=0d
there is no SG order at finite temperatures, i.e.,Tc=0. How-
ever, this result has recently been challengedf4g. To the best
of our knowledge, the only previous work on a spin-glass
model with uniaxial anisotropy is the one by Matsubaraet al.
f12g, where it is speculated that this anisotropy does not lead
to an SG phase at finite temperatures.

Another question, which is particularly significant, is the
study of quantum effects in the theory of spin glassesf13g.
From the theoretical point of view, it is well known that
quantum spin glasses, in comparison with their classical
counterparts, are far from being trivial, due to the noncom-
mutativity of the spin operators involvedssee, for example,
the discussion for the quantum transverse Ising SG model
with short- and long-range interactions, in Refs.f14,15g, re-
spectivelyd. In the limit of very low temperatures the role of
quantum fluctuations in pure or disordered systems becomes
more and more important. At the critical point itself, fluctua-
tions exist over all scales. At moderate temperatures, quan-
tum fluctuations are usually suppressed in comparison with
thermal ones. At low temperatures, however, quantum fluc-
tuations, especially in low-lying states, may dominate and
strongly influence the critical behavior of the system. There
are a few works on quantum Heisenberg SG, but only
infinite-range-interaction models have been treatedf16g.

Our motivation for this work is the well known fact that
the anisotropy may change the nature of phase transitions in
a fundamental way, and may induce the appearance of an SG
phase in the three-dimensional short-range Heisenberg
model. Also, the quantum influence in the phase diagram is a
matter of intrinsic interest, particularly from the experimen-
tal point of view, with relation to high-temperature supercon-
ductor materialsf17g. Aharonyet al. f18g suggested a mecha-
nism in which doping by holes introduces ferromagnetic
bonds into an otherwise antiferromagnetic quantum spin-1/2
Heisenberg model. These holes are localized in the insulating
antiferromagnetic phase and their effect can be well approxi-
mated by a quenched random distribution of ferromagnetic
bonds which display an SG phase at low temperatures, as a
window between the insulating antiferromagnetic phase and
the superconducting phase. Physically, the SG phase in this
new superconductor compound is attributed to the presence
of the random Dzyaloshinski-Moriya interactionf18g. We
will show in this work that the presence of uniaxial aniso-
tropy induces an SG phase at low temperatures only for a
finite value of the anisotropy; for small enough values of the
anisotropy, no long-range SG order is observed, which con-
firm the results of Mastubaraet al. f12g.

II. METHOD

The main issue we want to address is the influence of a
uniaxial anisotropy on the phase diagram of the quantum
Heisenberg spin-glass, with Hamiltonian,

H = − o
ki,jl

Jijfs1 − Di jdssi
xs j

x + si
ys j

yd + si
zs j

zg,

wheresi
a is the componenta of a spin-1/2 Pauli matrix in

site i and the sum is over all first-neighbor bonds on a cubic
lattice. In this work, we study two different initial probability
distributions forJij , a Gaussian and a uniform one, respec-
tively,

PsJijd =
1

Î2pJ̄
exps− Jij

2/2J̄2d,

or

PsJijd = 5 1

2Î3J̄
, − Î3J̄ , Jij , Î3J̄,

0, otherwise,
6

whereJ̄ is the width of the distributions. On the other hand,
the probability distribution forDi j is, initially , given by

PsDi jd = dsDi j − D0d.

We use a real-space renormalization-group approach; this
method has been successfully applied in the study of both
classical and quantum models. The formalism is especially
suitable to obtain multidimensional phase diagrams and
qualitative results, indicating universality classes and pos-
sible crossover phenomena. A great variety of RG methods
has been proposedf19,20g over the past years and applied
with success in many different quantum systemsf21,22g. Re-
cently, an important simplification of the successful method
introduced in Ref.f19g has been proposedf23g; we will de-
velop even further this approach in this work.

Within the context of a small-cell approximation, the
simple cubic lattice is represented by a hierarchical onef24g,
depicted in Fig. 1. The use of this particular hierarchical
lattice is equivalent to a Migdal-Kadanoff approximation
f25g. The original lattice is shown on the left-hand side of
Fig. 1, with different interactionsKij ;Jij /kBT and aniso-
tropy parametersDi j between first-neighbor spinssi ands j.
Performing a partial trace over spinss3, s4, s5, ands6, we
obtain a renormalized Hamiltonian, with parametersKij8 and
Di j8 sright-hand side of Fig. 1d.

FIG. 1. Hierarchical lattice suitable for calculating the
renormalization-group transformations on the simple cubic lattice.
The calculation of the renormalized quantitiessright-hand side of
the figured is explained in the text.
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First, we have to calculate the renormalized distributions
sforcing back the distributions to their original shapes leads
to wrong resultsf26gd. To do so, we choose the eight inter-
action parameters for the original lattice,Kij , from the origi-
nal distribution, while allDi j are the same,initially ; then we
calculate the renormalizedK8 andD8. This is done a number
of timessusually of the order of 1 milliond, to get new prob-
ability distributions forK8 andD8. The anisotropy parameter,
although uniform in the first iteration of the renormalization
group, follows a disordered probability distribution, after-
wards. Also, the distribution forK8 is no longer the same as
the initial one. For the second iteration, we chooseKij8 and
Di j8 from the renormalized distributions obtained in the first
iteration, combine them as in the left-hand side of Fig. 1, and
then calculateK9 andD9, i.e., the renormalized quantities for
the second iteration. This process is repeated until we reach a
“fixed-point” distribution. Alternatively, we can choose to
follow the distribution functions forK and Kxy;Ks1−Dd;
we will compare below the results for both procedures.

For each set ofKij andDi j , the renormalized quantities are
calculated as follows. Given a set of parameters, chosen from
a given probability distribution, we impose that

km1m2ur8um1m2l = Tr8khmjurshK,Djduhmjl,

where uhmjl stands forum1m2m3m4m5m6l sand in a similar
way for the “bra”d, rsr8d is the density matrix of the original
srenormalizedd cell sr8 is a function of the renormalized pa-
rametersK8, D8, and C8d, mi is the eigenvalue of thesz

operator at sitei, Tr8 means a partial trace over spinss3, s4,
s5, ands6, andhK ,Dj stands for all sixteen parameters in the
original cell. Only three elements ofr8 are nonzero, and this
is the number of renormalized quantities:Kij8 , Di j8 , andC8 sC8
is a constant generated by the renormalization procedure
which is not relevant for obtaining the phase diagramd. So,
no extra equation is needed and the procedure is exact at the
cluster level. One great advantage of this approach is that no
expansion of the Hamiltonian is necessary; this expansion
becomes cumbersome if cells with more sites are employed
or if models with spin 1 or greater are treated. Moreover, our
procedure recovers the same recursion relations as former
treatmentsf19g.

III. RESULTS AND DISCUSSION

Our goal is to obtain theskT/ J̄d3D0 phase diagram. We
start from many different points in this diagram and follow
the renormalized distributions until a given attractor is
reached. In Fig. 2 this phase diagram is depicted:SGstands
for the spin-glass phase whileP stands for the paramagnetic
one. We expect the spin-glass phase, which is certainly
present for the Ising modelsD0=1d f26g, to extend for
smaller values ofD0. This is the case but notice that the
transition line goes to zero at a value ofD0 greater than zero.
This behavior is analogous to the one for the antiferromag-
netic anisotropic Heisenberg model on the square lattice
f22g, except that in the latter model a reentrant behavior is
obtained. The fact that the transition line does not extend to
D0=0 is usually due to quantum fluctuations which, at low

temperatures, are important and, together with thermal fluc-
tuations, tend to drive the system to a disordered phase.

For the Ising subspacesD0=1d the fixed-point distribution

for the paramagnetic phase attractor is such thatJ̄/kT=0,

while for the SG attractor,J̄/kT=`. There are still possible
fixed points at the lineD0=0 sisotropic Heisenberg spin
glassd but they were not found in this workssee belowd. For
anyD0Þ0, the attractor is found to be at the lineD0=1, that
is, any initial point withD0Þ0 flows, upon application of the
renormalization-group procedure, to theD0=1 subspace. Ex-
actly at the transition line, the flow is towards the Ising
“fixed-point” spoint I in Fig. 2d and the whole line is at-
tracted to the distribution at that point. Physically, this means
that the critical behavior along the line is the same as for the
Ising spin glass. Critical exponents for the Ising spin glass
are the same as those calculated in Ref.f27g; moreover, the
critical probability distribution is the same as in the cited
reference, for both Gaussian and uniform probability distri-
butions.

Some points are worth mentioning here. The distributions
for Kij andDi j , after the first iteration, do not retain its origi-
nal form. Therefore, a more complete picture of this problem
would involve a flux on a space of probability distributions.
The phase diagram we chose to represent our results is only
a schematic one. On the other hand, ifD0 is different from 0
and 1, its distribution after the first iterations is not uniform
anymore. It evolves along the renormalization-group proce-
dure and only when the number of iterations increases, the
distribution for D is again a delta function,PsDi jd=dsDi j

−D0d, with D0=1 and zero width.
The phase diagramsFig. 2d shows that there is no spin-

glass phase for the isotropic spin-1/2 Heisenberg model in
three dimensions. This result confirms those found in earlier
works f9,28g, indicating that the lower critical dimension for
the isotropic spin-1/2 Heisenberg spin glass is greater than
three. On the other hand, Lee and Youngf4g found a spin-
glass phase for theclassical3D isotropic Heisenberg model.
As the transition takes place at low temperature, it is possible

FIG. 2. Approximate phase diagram for the anisotropic Heisen-
berg spin-glass on the cubic lattice.SG stands for the spin-glass
phase,P stands for the paramagnetic phase, andI stands for the
Ising transition point. The continuous line is a guide to the eye.
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that quantum fluctuations, present for the spin-1/2 model,
are strong enough to eliminate the spin-glass phase. We also
find that an infinitesimal uniaxial anisotropy is not able to
create an SG phase in a Heisenberg spin-1/2 system, in three
dimensions; this is consistent with the findings of Ref.f12g.

Our results are qualitatively the same for both Gaussian
and uniform distributions. We have also used a correlated
distribution for Kij and Di j f29g and the results suffer only
minor changes, maintaining the overall behavior. In another
approach we followed, the probability distributions for the
interactionsKij andKij

xy were followed; again, the qualitative
behavior is the same as when we follow the distributions for
Kij andDi j .

Finally, let us mention that, contrary to what happens for
systems where only ferromagneticsor antiferromagneticd in-
teractions are presentf19g, there is a strong difference be-
tween treating the cell “as a whole” or “by pieces.” In the
latter, the original cellssee Fig. 1d is seen as a combination in
parallel of 4 interactions, each one made of two interactions
in series. In this way, the renormalized interaction and aniso-
tropy can be first calculated for each combination in series
and then combined in parallel. For systems with no frustra-
tion f19g, this is shown to introduce an error smaller than
10%, when compared to treating the eight bonds and six
spins of the cell “as a whole.” This is no longer the case for
the model we study here and the errors are much bigger. We
believe that, for any system in which frustration is present,
the RG procedure has to be done using the whole cell. This is
due to the fact that frustration is not taken into account when
the cell is renormalized by pieces.

IV. SUMMARY

We applied a quantum renormalization-group procedure
to the anisotropic three-dimensional spin-1/2 Heisenberg
spin glass. A Migdal-Kadanoff approximation is used and the

skT/ J̄d3D0 phase diagram is calculated. The spin-glass
phase, present for the Ising modelsD0=1d, extends to
smaller values of the anisotropy parameter. The transition
temperature, which separates the ferromagnetic and para-
magnetic phases, goes to zero at approximatelyD0=0.59.
According to the approximation we used, the isotropic spin-
1/2 quantum Heisenberg spin-glass has no spin glass phase
at finite temperature. The whole transition line between the
SG phase and the paramagnetic one is found to belong to the
same universality class of the three-dimensional Ising spin
glass. Our conclusions hold true for Gaussian and uniform
distributions, for correlated distributions, and when the prob-
ability distributions forsKij ,Di jd or sKij ,Kij

xyd are renormal-
ized.
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